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This paper describes a method to identify key crystallographic

parameters that can serve as strong classifiers of crystal

chemistries and hence define new structure maps. The

selection of this pair of key parameters from a large set of

potential classifiers is accomplished through a linear data-

dimensionality reduction method. A multivariate data set of

known AI
4AII

6(BO4)6X2 apatites is used as the basis for the

study where each AI
4AII

6(BO4)6X2 compound is represented as

a 29-dimensional vector, where the vector components are

discrete scalar descriptors of electronic and crystal structure

attributes. A new structure map, defined using the two

distortion angles �AII (rotation angle of AII—AII—AII

triangular units) and  AIz = 0
AI—O1 (angle the AI—O1 bond makes

with the c axis when z = 0 for the AI site), is shown to classify

apatite crystal chemistries based on site occupancy on the A, B

and X sites. The classification is accomplished using a K-means

clustering analysis.
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1. Structure maps and structure classification

Structure maps have played an important role as a useful a

priori tool for establishing structure–chemistry relationships in

a two-dimensional way (Mooser & Pearson, 1959; Zunger,

1980; Villars, 1984; Pettifor, 1986; Rabe et al., 1992; Kleinke &

Harbrecht, 2000; Hauck & Mika, 2002; Zhang et al., 2007; Li et

al., 2008). Basically, the structure map approach involves

visualizing the data of known compounds with known crystal

structures in a two-dimensional space using two scalar

descriptors (normally heuristically chosen) that are associated

with physical/chemical properties, crystal chemistry or elec-

tronic structure. The objective is to map out the relative

geometric position of each structure type from which one tries

to discern qualitatively if there are strong associations of

certain structure types to certain bivariate combinations of

parameters.

From the data-mining perspective, a structure map is a data

classification tool. Data classification can be accomplished in

two ways (Han & Kamber, 2006): supervised and unsuper-

vised learning. In the case of supervised learning we have a

tuple X = (x1, x2, . . . xm) depicting m independent measure-

ments (chemical compositions) that is represented by an n-

dimensional attribute vector A = (A1, A2, . . . , An). Each

attribute (discrete scalar descriptors of crystal and electronic

structure) in A represents a feature of X. Each tuple, X, is

assumed to belong to a predefined class as determined by

another attribute called the class label attribute (crystal

structure type). The objective of supervised learning is to map

a function y ¼ f ðXÞ that can predict the associated class label

y of a given tuple in X. Typically this mapping is represented in

the form of classification rules, decision trees or mathematical
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formulae. The key difference between a supervised learning

and unsupervised learning is that we have no a priori infor-

mation on the predefined class of each tuple. The objective of

unsupervised learning is to assign a class to tuple in X without

having a known target class. This approach provides value in

finding correlations and similarities in data sets and the

mapping is typically represented in the form of data clustering.

Traditional structure maps belong to the supervised learning

scheme where the crystal structure information (predefined

class label) for every chemical composition (X) is ascertained

beforehand. In this paper we develop a data-mining approach

using unsupervised learning to discover the best classifiers for

constructing structure maps for AI
4AII

6(BO4)6X2 apatite-type

compounds without any a priori assumptions. One of the

fundamental challenges in chemical crystallography is to

discover the key structural descriptors such as specific

interatomic distances and angles that reflect the structural

systematics in complex crystal chemistries and this work

establishes a methodology for extracting such descriptors in a

statistically robust yet physically meaningful manner. In our

group we have applied data mining to explore a variety of

questions in crystal chemistry (Gadzuric et al., 2006; Rajago-

palan & Rajan, 2007; George et al., 2009; Suh & Rajan, 2005,

2009; Aourag et al., 2010; Broderick et al., 2010; Rajan, 2010;

Balachandran et al., 2011). Apatite-type compounds were

chosen because of their fundamental and technological

significance and we are taking advantage of a wealth of

experimentally and computational based studies on the crystal

chemistry of this class of compounds (Elliott, 1994; White &

ZhiLi, 2003; White et al., 2005; Mercier et al., 2005, 2007; Kim

et al., 2005; Sugiyama, 2007; Pramana et al., 2008; Baikie et al.,

2007, 2010).

The rest of the article is organized as follows: in x2 we

describe the crystal structure of apatites and the data set used

in this study, in x3 we briefly give an account of the mathe-

matics of principal component analysis (PCA) as an unsu-

pervised learning technique, in x4 the results are discussed, in

x5 the new structure map is defined and in x6 we conclude this

paper.

2. Apatite crystal chemistry

Chemically, apatites are described by the general formula

AI
4AII

6(BO4)6X2, where AI and AII are distinct crystallographic

sites that usually accommodate larger monovalent (Na+, K+

etc.), divalent (Ca2+, Sr2+, Ba2+, Pb2+ etc.) or trivalent (Y3+,

La3+, Ce3+, Sm3+ etc.) cations; B sites are filled by smaller

metals and metalloids (P5+, As5+, V5+, Si4+ etc.) and the X site

is filled by halide, hydroxide or oxide anions (F�, Cl�, Br�, I�,

OH�, O2�). The crystal structure of a typical Ca10(PO4)6F2

fluorapatite belonging to the space group P63/m is shown in

Fig. 1. The unit cell consists of 42 atoms and the complex

structure can be decomposed into three basic building (or

structural) units based on the principles of coordination

polyhedra (Hughes & Rakovan, 2002): AIO6 metaprism, BO4

tetrahedra and AIIO6X1,2 polyhedron. This process aids in the

development of an enumeration scheme where a crystal

structure is described using numerous discrete descriptors of

electronic and crystal structure parameters such as ionic radii,

electronegativity differences, bond length, bond angles, lattice

constants and total energy.
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Figure 1
Crystal structure of a typical P63/m hexagonal CaI

4CaII
6(PO4)6F2 apatite

with the atoms projected along the (001) plane shown. The complex
crystal structure is decomposed into three basic structural units: AIO6

metaprism, BO4 tetrahedra and AIIO6X1,2 polyhedra.

Table 1
List of 29 discrete descriptors of electronic and crystal structure
parameters.

Descriptor Brief description

a (Å) Lattice constant of the hexagonal unit cell
c (Å) Lattice constant of the hexagonal unit cell
c/a Variable axial ratio (no unit)
rAI (Å) Shannon’s ionic radii of AI-site ion (nine-coordina-

tion)
rB (Å) Shannon’s ionic radii of B-site ion
rAII (Å) Shannon’s ionic radii of AII-site ion (seven-coordi-

nation for F� and eight-coordination for Cl� and
Br�; Ðordević et al., 2008)

rX (Å) Shannon’s ionic radii of X-site ion
Av CR (Å) Average crystal radius = [(rAIx4) + (rAIIx6) + (rBx6)

+ (rOx24) + rXx2)]/42
AEN � OEN Electronegativity difference A atom and O atom
BEN � OEN Electronegativity difference B atom and O atom
AEN � XEN Electronegativity difference A atom at AII site and X

atom
AEN � BEN Electronegativity difference A atom at AI site and B

atom
AI—O1 (Å) Distance between AI and O1 atom
AI—O1AIz = 0

(Å)
Distance between AI and O1 atom with the

constraint z = 0 at AI

�AI—O (Å) Difference in the lengths AI—O1 and AI—O2
�AI—O

AIz = 0 (Å) Difference in the lengths AI—O1 and AI—O2 with
the constraint z = 0 at AI

 AI—O (�) The angle that the AI—O1 bond makes with respect
to c

 AI—O
AIz = 0 (�) The angle that the AI—O1 bond makes with respect

to c with the constraint z = 0 at AI

�AI (�) Counter-rotation angle of AIO6 structural unit
’AI (�) Metaprism twist angle (�/3 � 2�AI)
�AI (�) Orientation of AIO6 unit with respect to a
hB—Oi (Å) Average B—O bond length
h�O—B—Oi (�) Average O—B—O bond-bending angle
�AII (Å) AII—AII triangular side length
AII—X (Å) Distance between AII and X atom
�AII (�) Orientation of AII—AII—AII triangles with respect

to a
AII—O3 (Å) Distance between AII and O3 atom
�O3—AII—O3 (�) O3—AII—O3 angle
Etotal (eV) Total energy calculated from ab initio calculations



The raw data for this study comes from the detailed

geometrical parameterization scheme developed by Mercier et

al. (2005) where they quantify the bond distortions in the

P63/m apatite compounds using 15 algebraically independent

bond lengths and angles. Our objective is to screen these

discrete bond distortion descriptors to identify a subset of

dominant descriptors that could be chosen as the coordinates

for constructing new structure maps. The geometrical para-

meters carry structural information and understanding their

trends allows for the systematic tracking of structural modi-

fications (Mercier et al., 2005, 2007). In addition, we also

included the ionic radii and electronegativity data taken from

the work of Shannon (1976) and Pauling (1960), respectively.

The rationale behind choosing ionic radii and electro-

negativity differences to describe the chemistry and electronic

structure was dictated by past theoretical and experimental

work in the literature (Suzuki et al., 1984; Flora et al., 2004;

Matsunaga et al., 2008). In Table 1 all 29 attributes of the

apatite crystal structures used in this study are briefly defined.

A data set of 25 compounds with the stoichiometry

AI
4AII

6(BO4)6X2 was developed. In the data set the following

chemical elements were included: Ca, Ba, Sr, Pb, Hg, Zn and

Cd in the A site, P, As, V, Cr and Mn in the B site and F, Cl and

Br in the X site. A table containing the list of compound

chemistries considered in this work is given in Table 2.

3. Data dimensionality reduction with principal
component analysis

Principal component analysis (PCA) is one of the well known

unsupervised linear manifold learning methods. The mathe-

matical background that is reviewed here follows the treat-

ment of several published literatures (Jolliffe, 2002; Morris,

2004; Ringnér, 2008; Rajan et al., 2009). Manifold learning or

dimensionality reduction is concerned with projecting the

high-dimensional multivariate data into a new low-dimen-

sional subspace with the loss of minimal information (Rajan,

2010). The central idea of PCA was developed by relying on

the fact that the dataset consists of a large number of inter-

correlated descriptors. The purpose here is to reduce the

dimensionality of a data set, while retaining maximum varia-

bility in the data. This is achieved by transforming the original

set of variables to a new set of derived variables, called the

principal components (PCs), which are ordered so that the

first few retain most of the variation present in all of the

original variables (Jolliffe, 2002). The first PC accounts for the

maximum variance (highest eigenvalue) in the dataset. The

second PC is orthogonal to the first and accounts for most of

the remaining variance. Thus, the mth PC is orthogonal to all

others and has the mth largest variance in the set of PCs. Once

all the PCs have been calculated, only those with eigenvalues

above a critical level are retained. Each PC is a linear

combination of the weighted contribution of all attributes and

the magnitude of the weight determines the relative impact of

each descriptor in affecting the PC. From knowledge of the

calculated PCs one can easily determine the relative impor-

tance of each descriptor and the correlation between any two

descriptors. Information pertaining to the relative importance

of descriptors will be helpful in identifying the dominant

descriptors and the correlation information will be helpful in

screening the dominant descriptors to avoid choosing redun-

dant descriptors. Thus, from the evaluation of the sole

variance–covariance information or correlation information

(without including any information about the predefined class

label – crystal structure type), we can screen a large library of

descriptors and select only a dominant few as the potential

coordinates for defining the structure map.

The main computational steps of PCA are summarized

here. We have a large library of discrete attributes

A ¼ A1;A2; :::;Akð Þ that represent the features of apatite

crystal structure. The data is assumed to follow a multivariate

normal distribution. The first step in our analysis involves

preprocessing A by mean centering and standardization, and

denoting the preprocessed vector as ÂA. This preprocessing

step transforms each attribute in A to have a zero mean and

unit variance. The standardized data matrix becomes our data

set and it is mathematically described in the Euclidean space

as ÂA ¼ ÂA1; ÂA2; :::; ÂAk

� �
2 <25�29, where the integers 25 and

29 indicate the number of apatite compounds and the number

of electronic and crystal structure parameters considered in

this study. Let ÂAj ¼ aij

� �
, where ÂAj corresponds to the column

vector and aij represent the discrete features of each chemical

composition (index i) of the attribute ÂAj. Let S be the sample

covariance matrix of ÂA. The next step involves performing

eigenanalysis on the sample covariance matrix S. The eigen-

analysis results in the generation of eigenvectors and eigen-

values of the matrix S. The eigenvalues and the corresponding

eigenvectors are ordered in descending order. Only those

eigenvectors are retained whose eigenvalues are greater than

1. The eigenvectors (or principal components, PCs) form a

new set of derived variables that captures several important

characteristics of the features (A) of apatite crystal structure

that are helpful in developing structure maps.

In short, PCA decomposes the data matrix

ÂA ¼ ÂA1; ÂA2; :::; ÂAk

� �
2 <25�29 into two matrices P and U,

where P is called the loadings matrix (PCs or eigenvectors of

sample covariance matrix S) and U is called the scores matrix

(obtained by matrix multiplication of ÂA and P). Therefore, the

final model can be mathematically described as
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Table 2
List of compounds used in this work.

All compound chemistries are taken from the work of Mercier et al. (2005).

Ba10(PO4)6Br2 Pb10(AsO4)6Cl2
Ba10(PO4)6Cl2 Pb10(PO4)6F2

Sr10(PO4)6Br2 Sr10(PO4)6F2

Ca10(PO4)6Br2 Sr10(VO4)6F2

Ca10(PO4)6F2 Cd10(PO4)6Cl2
Ca10(CrO4)6Cl2 Cd10(CrO4)6Cl2
Ca10(VO4)6Cl2 Cd10(VO4)6Cl2
Ba10(PO4)6F2 Pb10(PO4)6Cl2
Ba10(MnO4)6F2 Hg5(PO4)3F
Sr10(VO4)6F2 Hg5(PO4)3Cl
Pb10(PO4)6Br2 Zn5(PO4)3F
Pb10(CrO4)6Cl2 Zn5(PO4)3Cl
Pb10(VO4)6Cl2



ÂA ¼ PTUþ R; ð1Þ

where R is the residual matrix. In the past PCA has been

applied to analyze bond geometries of crystal and molecular

structures (Murray-Rust & Motherwell, 1978; Pawlak et al.,

1999; Bürgi, 1998) and in this work we have applied it for the

first time to identify the key crystallographic parameters of

apatite crystal chemistries.

4. Results and discussion

From applying PCA to the multivariate apatite data, it was

identified that the first three PCs together explain more than

80% of the variation in the data. We will use the three PCs and

demonstrate new strategies for constructing structure maps

for apatite-type compounds. Before we show how to construct

a structure map from knowledge of the computed PCs we will

discuss the results obtained from the loadings and scores

matrix. The loadings matrix yields insight into the relationship

research papers

Acta Cryst. (2012). B68, 24–33 Balachandran and Rajan � Structure maps for apatites 27

Figure 2
(a) This is a two-dimensional plot, commonly referred to as a scores map,
between latent variables PC1 and PC2, and each data point is a
correlation position representing an apatite compound as influenced by
29 descriptors. Along the PC1 axis, distinct clusters of apatite compounds
with the same A-site elements are identified. The ionic radii of A-site
elements decrease in the direction shown in the figure and clearly Zn
stoichiometries could be seen to be well separated from the rest of the
compounds in this classification map, which correlates well with its
uncertain existence. (b) Having identified the structural correlations
along the PC1 axis, the relative influence of the dominant descriptors that
are responsible for the observed pattern is defined in this plot (commonly
referred to as a loadings map). The descriptors that dominate the PC1
axis are rAI, rAII, Av CR, AI—O1, (AI—O1)AIz = 0, AII—O3, �AII,
�O3—AII–O3, and lattice constants (a, c and c/a) since these descriptors
carry the largest weight. The abbreviations of the 29 descriptors used in
the loadings map are given in Table 1.

Figure 3
(a) The scores map shown here captures the pattern associated with the
same B-site element along the PC2 axis. Along the PC2 axis, apatites with
P (phosphorus) in the B-site are clustered together and are seen to be
well separated from the other cluster containing V, As, Mn and Cr in the
B site. (b) The loadings map defines the dominant descriptors that are
responsible for the typical pattern observed in the scores map. The
significant electronic structure and bond-distortion variables are rB,
BEN—OEN, hB—Oi, h�O—B—Oi, �AI,  

AIz = 0
AI—O and �AI—O. The abbrevia-

tions of the 29 descriptors used in the loadings map are given in Table 1.



between site chemistry-geometrical parameters and the rela-

tionship between algebraically independent geometrical

parameters. The scores matrix captures the correlation

between the apatite chemistries.

4.1. Mapping the structural patterns associated with A-site
chemistry

Each data point in Fig. 2(a) (referred to as a scores map)

represents a correlation position of an apatite compound as

influenced by 29 descriptors. The percentage labelled on the

axes corresponds to the amount of variance of the total

dataset captured by the respective axes. Along the PC1 axis,

clusters of apatite compounds based on the differences in the

ionic radii of A-site chemical elements are recognized. As a

generic trend we find that the ionic size of the A-site element

decreases as we move from left to right along the PC1 axis, as

shown in Fig. 2(a). Accordingly, the compounds belonging to

the same A-site chemical element (Ba, Sr, Pb, Ca, Hg, Cd and

Zn) are grouped together. Clearly, the two Zn-based stoi-

chiometries (located farthest right with a relatively large PC1

value) could be seen well separated from the rest of the

compounds. This correlates well with the experimental results

and thermodynamic calculations on the uncertain existence of

fully stoichiometric Zn-based apatite compounds (Grisafe &

Hummel, 1970; Flora et al., 2004).

The variables that are responsible for the observed pattern

can be understood by visualizing the PC1 axis, as shown in Fig.

2(b) (referred to as a loadings map). The weights in the

histogram give the relative contribution of each descriptor on

the PC1 axis. The descriptors that dominate the PC1 axis are

rAI, rAII, Av CR (average crystal radius), AI—O1, AII—O3,

�AII, �O3—AII—O3 and lattice constants (a, c and c/a) since

these descriptors carry the largest weight. Besides identifying

the dominant descriptors, we find that rAI, rAII, Av CR, AI—

O1, AII—O3, �O3—AII—O3 and lattice constants are directly

correlated to one another (all have negative PC1 values) and

are inversely correlated to the distortion angle �AII (has

positive PC1 value). While the inverse relationship between

�AII and �O3—AII—O3 is already known (Mercier et al., 2005),

the impact of ionic radii on �AII and �O3—AII—O3 is identified

for the first time. The dominant influence of ionic radii (rAI

and rAII) compared with the electronegativity differences
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Figure 4
The figure on the left is the apatite framework [AI

4(BO4)6]10� composed
of AIO6 metaprisms linked together with BO4 tetrahedra with channels
extending right through the structure. In these channels are inserted the
remaining AII and X ions forming an [AII

6X2]10+ complex to neutralize the
framework. The final crystal structure is typically of the form as shown on
the right. The dotted blue cell represents the basic unit cell of the apatite
crystal structure.

Figure 5
(a) The scores map shown here captures the pattern associated with the
same X-site element along the PC3 axis. Along the PC3 axis three clusters
of apatites are identified separating F, Cl and Br in the X site. (b) The
loadings map identifies the significant electronic structure and bond-
distortion variables that are responsible for the typical pattern observed
in the scores map. The descriptors that dominate the PC3 axis are rX,
AII—X, AEN—XEN,  AI—O, �AII, �AIz = 0

AI—O and ’AI. The abbreviations of
the 29 descriptors used in the loadings map are given in Table 1.



(AEN—OEN, AEN—BEN, AEN—XEN) suggest that the complex

bond distortions due to A-site substitution are controlled

predominantly by the steric constraints resulting from the

packing of atoms.

4.2. Mapping the structural patterns associated with B-site
chemistry

In Fig. 3(a) it is clearly shown that the PC2 axis recognizes

the pattern associated with B-site elements. Apatites with P

(phosphorus) in the B site are clustered together and are seen

to be well separated from V, As, Mn and Cr containing

apatites. To understand the dominant variables behind the

classification pattern, the PC2 axis is visualized (Fig. 3b). The

descriptors that dominate the PC2 axis are rB, BEN—OEN, hB—

Oi, h�O—B—Oi, �AI,  AIz = 0
AI—O and �AI—O. Among these

descriptors, rB, BEN—OEN, hB—Oi, h�O—B—Oi and �AI—O are

directly correlated to one another and are inversely correlated

to �AI and  AIz = 0
AI—O (which are in-turn directly correlated to

one another). It should be noted here that the three bond

distortion descriptors, �AI—O, �AI and  AIz = 0
AI—O belong to the

AIO6 structural unit. This indicates that any site substitution

along the B site not only affects the BO4 tetrahedra but also

significantly affects the geometry of the AIO6 structural unit.

The relationship between B-site cations and the variability in

�AI—O, �AI and  AIz = 0
AI—O distortion parameters could be

explained by considering the apatites as framework structures

(White et al., 2005), where the AIO6 metaprism and BO4

tetrahedra together form the framework [AI
4(BO4)6]10� with

channels extending right through the structure and in the

channels are located [AII
6X2]10+ complex ions neutralizing the

framework (Fig. 4). Therefore, any lattice substitution in the B

site affects the geometry of the AIO6 metaprism unit, which is

in turn expressed in the distortion parameters �AI—O, �AI and

 AIz = 0
AI—O . The ionic size of the B-site atom (rB) is found directly

correlated to lattice constants (a and c), however, we find that

variation in a is significantly higher compared with c (Fig. 3b).

4.3. Mapping the structural patterns associated with X-site
chemistry

In Fig. 5(a) three distinct clusters of apatites are recognized

along the PC3 axis, differentiating various apatite compounds

with respect to the X-site elements (F, Cl and Br). To further

understand the crystal chemical meaning behind the classifi-

cation pattern, the PC3 axis is visualized (Fig. 5b). The

descriptors that dominate the PC3 axis (Fig. 5b) are rX, AII—

X, AEN—XEN,  AI—O,  AIz = 0
AI—O , �AII, �AIz = 0

AI—O and ’AI. Among

these, rX, AII—X,  AI—O,  AIz = 0
AI—O and �AII are directly corre-

lated to one another and are inversely correlated to AEN—

XEN, �AIz = 0
AI—O and ’AI (which are directly correlated to one

another). It should be noted here that the three bond distor-

tion variables �AIz = 0
AI—O , ’AI (or �AI)  AI—O and  AIz = 0

AI—O belong

to the AIO6 structural unit. Hence, any site-substitution along

the X site significantly affects the geometry of the AIO6

structural unit ( AI—O,  AIz = 0
AI—O , �AIz = 0

AI—O and ’AI). The role of

ionic size (rX) and chemical bonding (AEN—XEN) in impacting

the bond distortions is very evident from the interpretation of

the PC3 axis. The lattice constant a is found to be directly

correlated to rX, whereas the lattice constant c appears to be

essentially unaffected (Fig. 5b), which suggests that any site

substitution along the X site affects the lattice constant a far

more than compared with the lattice constant c.

Hughes et al. (1989) reported that in Ca5(PO4)3X (X = F, Cl,

OH) apatites, changes induced in the crystal structure as a

result of differences in the X anions propagate throughout the

structure with the CaIIO6X1,2 polyhedron being greatly

affected, but have a minor impact on the average P—O and
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Figure 6
The coordinates for constructing new structure maps are obtained from the loadings maps. The loadings maps are used for two purposes: (i) to identify
the dominant bond-geometrical descriptors and (ii) to screen the dominant descriptors for structure map construction. Measuring the absolute distance
from the origin identifies dominant descriptors. The impact of the descriptors is increased as its distance from the origin is increased. The purpose of
screening is to remove intercorrelated descriptors. Within a PC, all descriptors are intercorrelated. However, the PCs are orthogonal and uncorrelated to
each other. Therefore, we can construct a structure map by picking any two dominant descriptors from the (a) PC1, (b) PC2 and (c) PC3 axes. Here we
have demonstrated in detail the construction of a structure map by choosing �AII and  AIz = 0

AI—O bond distortion angles as the dominant descriptors. This
logic can also be extended to other dominant descriptors. It should be noted that in this figure we have repeated the same loadings maps shown in Figs.
2(b), 3(b) and 5(b), however, we have interpreted them in a totally different manner. The role of the loadings maps shown here is to identify key bond-
distortion parameters for constructing new structure maps for apatites. In the previous case, the loadings maps were used to rationalize the structural
patterns observed in Figs. 2(a), 3(a) and 5(a) related to A, B and X site occupancy.



CaI—O bond lengths. However, our data-mining work

suggests that any site substitution in the X site, not only affects

the AIIO6X1,2 structural unit but also has a significant impact

on the orientation of the AIO6 structural unit. For example, if

we consider the relative magnitude (in absolute scale) of each

descriptor in the loadings map (shown in Fig. 5b), it is clear

that hB—Oi and AI—O1 bond-length descriptors, repre-

senting the average bond lengths in BO4 and AIO6 structural

units, have a relatively minor impact on the PC3 axis. On the

other hand, bond-length descriptors associated with AIIO6X1,2

structural unit such as AII—X and �AII have a significant

impact on the PC3 axis. This pattern, corresponding to the

variations in the average bond lengths as a result of X-site

substitution, is in agreement with the observation of Hughes et

al. (1989). However, our loadings map also identifies that ’AI

(or �AI)  AI—O and  AIz = 0
AI—O bond-angle descriptors undergo

relatively significant variation due to X-site substitution, an

effect that was undetected by Hughes et al. (1989). This

observation leads to the conclusion that structural adjustments

caused due to the differences in column anions can be more

clearly understood by critically examining the local variations

caused due to the changes in the following bond distortion

angles: ’AI (or �AI)  AI—O and  AIz = 0
AI—O .

5. New structure map for apatites

In the results discussed in x4 we employed the scores map. In

this section we will use the loadings map (Fig. 6) to screen the

bond geometrical descriptors so that we can choose two

dominant yet uncorrelated descriptors that can be used as the

coordinates for a new structure map. The process involves two

steps:

Step 1 – Identification of dominant bond geometrical

descriptors: The relative impact of each descriptor in a load-

ings map is identified by measuring the absolute distance from

the origin. The impact of the descriptors is increased as its

distance from the origin is increased. Therefore, from the

loadings maps shown in Fig. 6 we identify the following

dominant bond geometrical descriptors:

(i) With respect to the PC1 axis (Fig. 6a), AI—O1, (AI—

O1)AIz = 0, AII—O3, �O3—AII—O3 and �AII are dominant.

(ii) With respect to the PC2 axis (Fig. 6b), hB—Oi, �AI,

 AIz = 0
AI—O ,  AI—O and h�O—B—Oi are dominant.

(iii) With respect to the PC3 axis (Fig. 6c), AII—X,  AI—O,

�AII,  
AIz = 0
AI—O , ’AI (or �AI) and �AI

are dominant.

Step 2 – Screening the dominant

descriptors for structure map

construction: The purpose of

screening is to select two strong

classifiers that are dominant yet

uncorrelated. Within a PC axis,

all descriptors are inter-

correlated. For example, although

AI—O1, (AI—O1)AIz = 0, AII—O3,

�O3—AII—O3 and �AII are dominant

with respect to the PC1 axis, they

are intercorrelated. This implies

that from knowledge of any one of

these descriptors the variation in

the other can be estimated. On the

other hand, these PCs are ortho-

gonal and uncorrelated to each

other. As a result we can choose

any two variables, one from each

set {AI—O1, (AI—O1)AIz = 0, AII—

O3, �O3—AII—O3 and �AII}, {hB—

Oi, �AI,  AIz = 0
AI—O ,  AI—O and
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Figure 7
The new structure map for apatite compounds defined using the two
orthogonal coordinates �AII and  AIz = 0

AI—O1 identified through PCA is
shown. Filled circles, triangles and squares represent apatites that have
fluoride (F), chloride (Cl) and bromide (Br) anions in the X site,
respectively.

Figure 8
The key bond-distortion angles, �AII and  AIz = 0

AI—O1 identified from PCA, are schematically shown here. �AII

is defined as the rotation angle of AII—AII—AII triangular units and  AIz = 0
AI—O1 is defined as the angle the

AI—O1 bond makes with respect to the c axis with the additional constraint z = 0 at the AI site (Mercier et
al., 2005). It should be noted that the two algebraically independent distortion angles are manifested in
different orientations of the crystal structure as shown in the figure.



h�O—B—Oi} and {AII—X,  AI—O, �AII,  
AIz = 0
AI—O , ’AI (or �AI) and

�AI} to construct new structure maps. This strategy ensures

robustness in the chosen variables because such pairs of

variables are likely to have only a low correlation between

them.

Following this two-step approach, a library of new structure

maps can be developed for apatites. Here we demonstrate the

logic in detail for constructing a new structure map defined

using the two distortion angles �AII (rotation angle of AII–AII–

AII triangular units) and  AIz = 0
AI—O1 (the angle the AI—O1 bond

makes with respect to the c axis with the constraint z = 0 at the

AI site). This process can also be extended to other dominant

descriptors.

The new structure map for apatites defined between �AII

and  AIz = 0
AI—O1 distortion angles is shown in Fig. 7. While �AII is

the key bond-distortion angle of the apatite crystal structure

carrying the largest PC1 coefficient (among bond angles), the

significance of  AIz = 0
AI—O1 is evident from the loadings map of the

PC2 and PC3 axis. With respect to the PC2 axis,  AIz = 0
AI—O1 and

�AI carry similar weights indicating their similarity. However,

with respect to the PC3 axis, the relative weight of  AIz = 0
AI—O1 is

significantly higher than �AI and is comparable to  AI—O1

(which in turn has a relatively lower significance with respect

to the PC2 axis). Since the variance captured by the PC2 axis is

higher compared with the PC3 axis, we selected �AII and

 AIz = 0
AI—O1 as the two orthogonal coordinates of the new struc-

ture map. The schematic of the geometry of distortion angles

�AII and  AIz = 0
AI—O1, as described by Mercier et al. (2005), is

shown in Fig. 8.

The structure map picks up site occupancy information that

demarcates broad regimes in apatite crystal chemistry. This is

shown in Fig. 9 where we have quantitatively mapped out

various clusters through the K-means clustering method.

Unlike most structure maps where the proximity between data

points is explored through visual inspection, we have

employed the K-means clustering method to detect natural

groupings in the data. The K-means clustering approach

provides a quantitative metric for proximity estimation (see

Appendix A).

The classification of apatite crystal chemistries after K-

means clustering is shown in Fig. 9. The clusters are numbered

from 1 to 7 in an arbitrary order for ease of interpretation. The

relationship linking seven data clusters with the site-occu-

pancy information is summarized in Table 3. The structure

map identifies new and unexplored patterns of behavior of

apatite compound chemistries, reinforcing the fact that the

two distortion angles, �AII and  AIz = 0
AI—O1 are strong classifiers.

The validity of our methods is aided by the fact that we can

recover known information, and at the same time add signif-

icant new information that would not have been easily

discernible. For example, clusters 1 and 2 (k = 1 and k = 2)

correspond to F-apatites. They are well localized in the

structure map and are characterized by relatively low �AII and

 AIz = 0
AI—O1. The two F-apatites that do not belong to the clusters

k = 1 and k = 2 are Hg5(PO4)3F (in k = 4) and Zn5(PO4)3F (in

k = 7). While the existence of a fully stoichiometric

Zn5(PO4)3F apatite compound is uncertain due to the rela-

tively smaller ionic size of Zn2+ cations (Grisafe & Hummel,

1970; Flora et al., 2004), the relative position of Hg5(PO4)3F

suggests some peculiar characteristics. Even though Ca2+ and

Hg2+ cations have roughly the same ionic size (1.18 and 1.23 Å

in the AI site), their electronegativity data indicates that Hg

atoms (electronegativity value of 2 in Pauling scale) are

relatively highly covalent compared with the Ca atoms (elec-

tronegativity value of 1 in Pauling scale). In the structure map

this covalent character is predicted to be manifested in the

bond distortion angle  AIz = 0
AI—O1. This observation of unusual

behaviour in Hg5(PO4)3F stoichiometry, discovered based

solely on data-mining methods, identifies a new topic for

research papers

Acta Cryst. (2012). B68, 24–33 Balachandran and Rajan � Structure maps for apatites 31

Figure 9
The structure map with the data classification is shown. The classification
is accomplished through a quantitative K-means clustering method. The
clusters are numbered from 1 to 7 in an arbitrary order for ease of
interpretation. We find that the clustering effectively classifies apatite
chemistries based on site occupancy on the A, B and X sites. The
relationship linking data clusters with site occupancy information is
summarized in Table 3.

Table 3
Interpretation of data clusters obtained from the K-means clustering
method.

The relationship linking various clusters shown in Fig. 9 with the site
occupancy is described.

Clusters Site occupancy

k = 1 and k = 2 A site: Ba, Pb, Sr, Ca
B site: P, V, Mn
X site: F

k = 3 A site: Ba
B site: P
X site: Cl and Br

k = 4 A site: Sr, Hg
B site: P
X site: Cl and Br

k = 5 A site: Ca, Cd, Pb
B site: V, Cr, As
X site: Cl

k = 6 A site: Ca, Pb
B site: P
X site: Cl and Br

k = 7 A site: Zn
B site: P



detailed computational investigations and has initiated

another study of further exploration, to be reported in another

paper. It should be noted that there is no study reported in the

literature on the synthesis and determination of the phase

stability of Hg-containing apatites.

6. Conclusion

We have demonstrated a data-mining approach based on an

unsupervised learning scheme using principal component

analysis (PCA) and K-means clustering for developing struc-

ture maps without any a priori choice of key factors governing

the complex apatite crystal structure. We have identified a new

structure map that serves as a strong classifier and captures

several regularities in the bond distortions of apatite

compounds that were associated with A, B and X site occu-

pancy.

APPENDIX A
K-means clustering is a well known methodology used in

pattern recognition studies for discovering natural grouping(s)

in complex data sets (Jain, 2010). Given a representation of n

objects or data points, the K-means clustering attempts to find

k groups (or clusters) based on a measure of similarity such

that the similarities between data points in the same cluster

are high while the similarities between data points in different

cluster are low. The algorithm proceeds as follows (Han &

Kamber, 2006). First, it randomly selects k of the objects (the

value of k must be provided at the beginning), each of which

initially represents a cluster mean or center. For each of the

remaining objects, an object is assigned to the cluster to which

it is most similar, based on the distance between the object and

the cluster mean. While there are different similarity metrics,

we have chosen the conventional Euclidean distance (L2-

norm). It then computes the new mean for each cluster. This

process iterates until the squared-error criterion function

converges

E ¼
Xk

i¼1

X
p2Ci

p�mi

�� ��2; ð2Þ

where E is the sum of the square error for all objects in the

data set; p is the point in the space representing a given object

(chemical composition); mi is the mean of cluster Ci. In other

words, for each object in each cluster, the distance from the

object to the cluster center is squared and the distances are

summed. This criterion tries to make the resulting k clusters as

compact and as separate as possible. The above process was

repeated over several trials for different values of k (3–9) to

determine the optimal k clusters in the two-dimensional

structure map shown in Fig. 6. For k = 7, we obtained an

optimal partition in the data. We followed the criterion

suggested by Tibshirani et al. (2001) to determine the optimal

number of clusters. At first, K-means is run independently for

different values of k. The sum of the squared error distance

decreases as k increases, but from k = 7 onwards we found that

the decrease in the sum of the squared error distance mark-

edly reduces thereby forming an elbow, which indicates the

appropriate number of clusters.
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